3.291 \(\int \frac {\sqrt {\sec (c+d x)} (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=154 \[ \frac {(19 A+3 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

-1/4*(A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(9*A-7*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d
/(a+a*sec(d*x+c))^(3/2)+1/32*(19*A+3*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c
))^(1/2))/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {4085, 4012, 3808, 206} \[ \frac {(19 A+3 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((19*A + 3*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[
2]*a^(5/2)*d) - ((A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((9*A - 7*C)*Sec[
c + d*x]^(3/2)*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4012

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n
, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0]
&& LeQ[m, -1]

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {1}{2} a (7 A-C)+a (A-3 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(19 A+3 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(19 A+3 C) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(19 A+3 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.93, size = 308, normalized size = 2.00 \[ \frac {(\sec (c+d x)+1)^{5/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right ) \sqrt {\sec (c+d x)+1} \sec ^5\left (\frac {1}{2} (c+d x)\right ) ((13 A-3 C) \cos (c+d x)+9 A-7 C)}{\sec ^{\frac {3}{2}}(c+d x)}+\sqrt {2} (19 A+3 C) \cos ^2(c+d x) \sqrt {\tan ^2(c+d x)} \cot (c+d x) \left (\log \left (-3 \sec ^2(c+d x)-2 \sec (c+d x)-2 \sqrt {2} \sqrt {\tan ^2(c+d x)} \sqrt {\sec (c+d x)+1} \sqrt {\sec (c+d x)}+1\right )-\log \left (-3 \sec ^2(c+d x)-2 \sec (c+d x)+2 \sqrt {2} \sqrt {\tan ^2(c+d x)} \sqrt {\sec (c+d x)+1} \sqrt {\sec (c+d x)}+1\right )\right )\right )}{64 d (a (\sec (c+d x)+1))^{5/2} (A \cos (2 (c+d x))+A+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((1 + Sec[c + d*x])^(5/2)*(A + C*Sec[c + d*x]^2)*(((9*A - 7*C + (13*A - 3*C)*Cos[c + d*x])*Sec[(c + d*x)/2]^5*
Sqrt[1 + Sec[c + d*x]]*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2]))/Sec[c + d*x]^(3/2) + Sqrt[2]*(19*A + 3*C)*Co
s[c + d*x]^2*Cot[c + d*x]*(Log[1 - 2*Sec[c + d*x] - 3*Sec[c + d*x]^2 - 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + S
ec[c + d*x]]*Sqrt[Tan[c + d*x]^2]] - Log[1 - 2*Sec[c + d*x] - 3*Sec[c + d*x]^2 + 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*
Sqrt[1 + Sec[c + d*x]]*Sqrt[Tan[c + d*x]^2]])*Sqrt[Tan[c + d*x]^2]))/(64*d*(A + 2*C + A*Cos[2*(c + d*x)])*(a*(
1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 502, normalized size = 3.26 \[ \left [\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19
*A + 3*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(
d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((13*A - 3*C)*cos(
d*x + c)^2 + (9*A - 7*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c))
)/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((19*A + 3*C)
*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(-a)*arctan(sq
rt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*((13*A - 3*C)*
cos(d*x + c)^2 + (9*A - 7*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x +
 c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 2.60, size = 348, normalized size = 2.26 \[ \frac {\sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \left (13 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+19 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )-3 C \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+3 C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )-4 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+19 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-4 C \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+3 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-9 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+7 C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right )}{16 d \sin \left (d x +c \right )^{5} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/16/d*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^2*(13*A*cos(d*x+c)^
2*(-2/(1+cos(d*x+c)))^(1/2)+19*A*cos(d*x+c)*sin(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))-3*C*co
s(d*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)+3*C*sin(d*x+c)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)
)-4*A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+19*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-4*
C*cos(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)+3*C*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-9*A*(-2
/(1+cos(d*x+c)))^(1/2)+7*C*(-2/(1+cos(d*x+c)))^(1/2))/sin(d*x+c)^5/(-2/(1+cos(d*x+c)))^(1/2)/a^3

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________